

AAMA 501-05 AND ASTM E 1886 and ASTM E 1996 TEST REPORT

Rendered to:

CORAL ARCHITECTURAL PRODUCTS

SERIES/MODEL: PW256 PRODUCT TYPE: Aluminum Curtain Wall System

Title	Summary of Results
Air Infiltration	$0.10 \text{ L/s/m}^2 (0.02 \text{ cfm/ft}^2)$
Water Resistance Test Pressure	575 Pa (12.02 psf)
Uniform Load Deflection Test Pressure	3110 Pa (±65.0 psf)
Uniform Load Structural Test Pressure	4665 Pa (± 97.5 psf)

This report contains in its entirety:

Cover Page:1 pageReport Body:10 pagesTest Equipment:1 pagePhotographs:7 pagesSketches:2 pagesDrawings:16 pages

Reference should be made to Architectural Testing, Inc. Report No. 87460.01-401-44 for complete test specimen description and data.

2250 Massaro Blvd Tampa, FL 33619 phone: 813-628-4300 fax: 813-628-4433 www.archtest.com

PERFORMANCE TEST REPORT

Rendered to:

CORAL ARCHITECTURAL PRODUCTS 3010 Rice Mine Road Tuscaloosa, Alabama 35406

Report No.:	87460.01-401-44
Test Dates:	12/16/08
Through:	03/13/09
Report Date:	06/11/09
Expiration Date:	03/13/13

Project Summary: Architectural Testing, Inc. was contracted by Coral Architectural Products to perform testing on a Series/Model PW256, aluminum curtain wall system. The samples tested met the performance requirements set forth in the referenced test procedures for a ± 3110 Pa (± 65.0 psf) Design Pressure with missile impacts corresponding to Missile Level D and Wind Zone 4. Test specimen description and results are reported herein. The sample was provided by the client.

Test Methods: The test specimen was evaluated in accordance with the following:

AAMA 501-05, Methods of Tests for Exterior Walls

ASTM E 283-04, Test Method for Determining Rate of Airflow Through Exterior Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen.

ASTM E 330-02, Test Method for Structural Performance of Exterior Windows, Curtain Walls and Doors by Uniform Static Air Pressure Difference.

ASTM E 331-00, Test Method for Water Penetration of Exterior Windows, Curtain Walls and Doors by Uniform Static Air Pressure Difference.

ASTM E 1886-05, Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors and Storm Shutters Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials.

ASTM E 1996-05, Standard Specification for Performance of Exterior Windows, Glazed Curtain Walls, Doors and Storm Shutters Impacted by Wind Borne Debris in Hurricanes.

2250 Massaro Blvd Tampa, FL 33619 phone: 813-628-4300 fax: 813-628-4433 www.archtest.com

87460.01-401-44 Page 2 of 10

Test Specimen Description:

Series/Model: PW256

Product Type: Aluminum Curtain Wall System

Overall Size: 4667 mm (183-3/4") wide by 3683 mm (145") high

Top Fixed Daylight Opening Size (3): 1448 mm (57") wide by 1016 mm (40") high

Bottom Fixed Daylight Opening Size (3): 1448 mm (57") wide by 2413 mm (95") high

Overall Area: 17.19 m² (185 ft²)

Finish: Anodized aluminum

Frame Construction: The frame was constructed of extruded aluminum. The vertical members were continuous from head to sill. The corners were coped, butted, sealed and secured with three $#14 \times 1$ " hex head screws through the jambs into the head and sill members. The head, horizontal mullion and sill were secured with three $#14 \times 1$ " hex head screws through the jambs and vertical mullions into screw bosses of the horizontal members.

Weatherstripping:

Description	<u>Quantity</u>	Location
1/4" high by 3/4" wide custom vinyl seal	1 Row	Each side of pressure plates against glass perimeter.
5/16" high by 5/8" wide custom vinyl seal	1 Row	Each center of pressure plates against the glass.

Glazing Details: The lower openings utilized a single sheet of nominal 14.3 mm (9/16") thick laminated glass fabricated from two sheets of 6 mm (1/4") thick heat strengthened glass separated by a 0.090" thick SentryGlas Plus interlayer. The upper openings utilized a single sheet of nominal 14.3 mm (9/16") thick laminated glass fabricated from two sheets of 6 mm (1/4") thick heat strengthened glass separated by a 0.120" thick Uvekol Type S interlayer. The lights were set from the exterior onto a 7/8" wide by 1/4" high custom rubber gasket. The glass utilized molded plastic end dams at each horizontal and vertical intersection that were sealed in place. The glass was secured with exterior aluminum pressure plates utilizing #12 x 1" self-tapping screws located 2" from the ends and 9" on center. An aluminum trim cap was applied to the pressure plates. The test unit utilized a 3/4" glazing bite.

Test Specimen Description: (Continued)

Drainage:

Description	<u>Quantity</u>	Location
1/4" round weep holes	12	6" from each end of the horizontal pressure plates, at the horizontal mullion and sill, draining the glazing pockets.
1/4" round weep holes	12	6" in from each end of the horizontal mullion snap trim cap, at the horizontal mullion and sill, on the bottom return leg.

Hardware: No hardware was utilized.

Reinforcement: The intermediate vertical mullions utilized a steel "C" channel 4-1/2" by 1-7/8" by 1/4" thick. Each end of the reinforcement was secured to the mullion with one $\#1/4 \ge 20 \ge 2$ " bolt with nut and washer. A 3-3/4" by 1/2" flat stock steel was also utilized in the intermediate vertical mullions inside the steel "C" channel.

Installation: The test buck was constructed from 2-1/2" x 8" x 3/16" steel C-channel. Each corner was butted and secured with two 1/2" x 2" bolts with nuts and washers. The sill and head framing members were secured to the steel channel with six 1/2"-13 x 2" bolts with nuts and washers located 4" from each corner and one 4" from each side of the vertical mullions. The exterior and interior perimeters were sealed with silicone.

Test Results :	The temperature during testing was 23.3°C (74°F). The results are tabulated as	
	follows:	

<u>Paragraph</u>	Title of Test - Test Method	Results	Allowed
2.2	Preload of 50% of design Pressure per ASTM E 330-02 1556 Pa (32.5 psf) (Positive)	NA	NA
2.3	Air Leakage Resistance per AST 75 Pa (1.6 psf)	0.025 L/s/m^2	0.5 L/s/m^2
	300 Pa (6.24 psf)	(0.01 cfm/ft^2) 0.10 L/s/m ² (0.02 cfm/ft ²)	$(0.06 \text{ cfm/ft}^2) \text{ max.}$ 0.5 L/s/m^2 $(0.06 \text{ cfm/ft}^2) \text{ max.}$

Note #1: The tested specimen meets (or exceeds) the performance levels specified in AAMA 501-05 for air leakage resistance.

2.4	Water Penetration Resistance per	ASTM E 331	
	574.2 Pa (12.0 psf)	No leakage	No leakage
2.9	Uniform Load Deflection per AS		
	(Deflections were taken on the ho	orizontal mullion)	
	(Loads were held for 30 seconds)		
	2333 Pa (48.75 psf) (positive)	15.0 mm (0.59")	25.9 mm (1.02") max.
	3110 Pa (65.0 psf) (positive)	15.5 mm (0.61")	25.9 mm (1.02") max.
	2333 Pa (48.75 psf) (negative)	14.7 mm (0.63")	25.9 mm (1.02") max.
	3110 Pa (65.0 psf) (negative)	16.5 mm (0.65")	25.9 mm (1.02") max.
2.9	Uniform Load Deflection per AS	TM E 330	
	(Deflections were taken on the ve	ertical mullion)	
	(Loads were held for 30 seconds)		
	2333 Pa (48.75 psf) (positive)	6.6 mm (0.26")	20.3 mm (0.80") max.
	3110 Pa (65.0 psf) (positive)	7.9 mm (0.31")	20.3 mm (0.80") max.
	2333 Pa (48.75 psf) (negative)	6.6 mm (0.26")	20.3 mm (0.80") max.
	3110 Pa (65.0 psf) (negative)	7.4 mm (0.29")	20.3 mm (0.80") max.
2.10	Water Penetration Resistance per		
	574.2 Pa (12.0 psf)	No leakage	No leakage

87460.01-401-44 Page 5 of 10

Test Results: (Continued)

Paragraph	Title of Test - Test Method	Results	Allowed
2.11	Uniform Load Structural per AS (Permanent sets were taken on th (Loads were held for 30 seconds 4665 Pa (97.5 psf) (positive)	ne horizontal mullion)	9.4 mm (0.37") max.
	4665 Pa (97.5 psf) (positive) 4665 Pa (97.5 psf) (negative)	5.8 mm (0.23")	9.4 mm (0.37") max. 9.4 mm (0.37") max.
2.11	Uniform Load Structural per AS (Permanent sets were taken on th (Loads were held for 30 seconds)	ne vertical mullion)	
	4665 Pa (97.5 psf) (positive) 4665 Pa (97.5 psf) (negative)	<0.25 mm (<0.01") 0.51 mm (0.02")	7.4 mm (0.29") max. 7.4 mm (0.29") max.

Test Results: The following results have been recorded:

ASTM E 1886, Large Missile Impact

Conditioning Temperature: 23.3°C (74°F) Missile Weight: 3433.8 g (9.2 lbs) Missile Length: 2.44 m (8' 0") Muzzle Distance from Test Specimen: 5.2 m (17' 0")						
Impact #1: Missile Vel vertical	Impact #1: Missile Velocity: 15.24 m/s (50.0 fps); orientation within ±5° of vertical					
-	Bottom, left lite of glass, center of glazing Missile hit target area, no penetration Pass					
Impact #2: Missile Vel vertical	locity: 15.18 m/s (49.8 fps); orientation within $\pm 5^{\circ}$ of					
-	Bottom, left lite of glass, upper right corner of the glazing Missile hit target area, no penetration Pass					
Impact #3: Missile Vel vertical	locity: 15.33 m/s (50.3 fps); orientation within $\pm 5^{\circ}$ of					
-	Bottom, center lite of glass, lower left corner of the glazing Missile hit target area, no penetration Pass					
Impact #4: Missile Vel vertical	locity: 15.42 m/s (50.6 fps); orientation within $\pm 5^{\circ}$ of					
-	Bottom, center lite of glass, center of the glazing Missile hit target area, no penetration Pass					
Impact #5: Missile Vel vertical	locity: 15.18 m/s (49.8 fps); orientation within $\pm 5^{\circ}$ of					
_	Bottom, right side lite of glass, upper right corner of the glazing Missile hit target area, no penetration Pass					

Test Results: (Continued)

ASTM E 1886, Large Missile Impact (Continued)

Impact #6: Missile Ve vertical	locity: 15.27 m/s (50.1 fps); orientation within $\pm 5^{\circ}$ of
-	Bottom, right side lite of glass, center of the glazing Missile hit target area, no penetration Pass
Impact #7: Missile Ve vertical	locity: 15.42 m/s (50.6 fps); orientation within $\pm 5^{\circ}$ of
-	Left intermediate vertical mullion, center of mullion Missile hit target area, dented the aluminum cap Pass
Impact #8: Missile Ve vertical	locity: 15.39 m/s (50.5 fps); orientation within $\pm 5^{\circ}$ of
-	Horizontal mullion, center of mullion Missile hit target area, dented the aluminum cap Pass

Note: See Architectural Testing Sketch #2 for impact locations.

Test Results: (Continued)

ASTM E 1886, Air Pressure Cycling

Design Pressure: ±3110 Pa (±65.0 psf)

Number of	Average	Maximum Deflection at Indicator mm (inch)				nch)	
Cycles	(seconds)	#1	#2	#3	#4	#5	#6
3500	2.63	1.27 (0.05)	13.21 (0.52)	1.52 (0.06)	2.03 (0.08)	13.97 (0.55)	2.03 (0.08)
300	6.08	1.52 (0.06)	15.75 (0.62)	1.52 (0.06)	2.54 (0.10)	16.76 (0.66)	2.28 (0.09)
600	3.00	1.78 (0.07)	21.08 (0.83)	1.78 (0.07)	3.30 (0.13)	22.35 (0.88)	2.28 (0.09)
100	5.34	2.28 (0.09)	22.61 (0.89)	2.54 (0.10)	3.81 (0.15)	23.62 (0.93)	2.54 (0.10)
		Permanent Set					
		1.02	7.36	0.51	2.03	7.11	0.25 (0.01)
	Cycles 3500 300 600	Number of Cycles Cycle Time (seconds) 3500 2.63 300 6.08 600 3.00	Number of CyclesCycle Time (seconds)#1 3500 2.63 1.27 (0.05) 300 6.08 1.52 (0.06) 600 3.00 1.78 (0.07) 100 5.34 2.28 (0.09)	Number of CyclesCycle Time (seconds)#1#2 3500 2.63 1.27 ($0.05)$ 13.21 ($0.05)$ 300 6.08 1.52 ($0.06)$ 152 ($0.62)$ 600 3.00 1.78 ($0.07)$ 21.08 ($0.83)$ 100 5.34 2.28 ($0.09)$ 22.61 ($0.09)$ 1.02 7.36	Number of CyclesCycle Time (seconds)#1#2#3 3500 2.63 1.27 13.21 1.52 300 6.08 1.52 (0.05) (0.52) (0.06) 300 6.08 1.52 15.75 1.52 600 3.00 1.78 21.08 1.78 100 5.34 2.28 22.61 2.54 Permar 1.02 7.36 0.51	Number of CyclesCycle Time (seconds)#1#2#3#4 3500 2.63 1.27 13.21 1.52 2.03 300 2.63 1.27 13.21 1.52 2.03 300 6.08 1.52 15.75 1.52 2.54 600 3.00 1.78 21.08 1.78 3.30 600 3.00 1.78 21.08 1.78 3.30 100 5.34 2.28 22.61 2.54 3.81 (0.09) (0.89) (0.10) (0.15) Permatent Set 1.02 7.36 0.51 2.03	Number of CyclesCycle Time (seconds)#1#2#3#4#5 3500 2.63 1.27 13.21 1.52 2.03 13.97 300 6.08 1.52 15.75 1.52 2.54 16.76 000 3.00 1.78 21.08 1.78 3.30 22.35 100 5.34 2.28 22.61 2.54 3.81 23.62 Permatent Set 1.02 7.36 0.51 2.03 7.11

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure	Number of	Average	Maximum Deflection at Indicator mm (inch)				nch)	
Range Pa (psf)	Cycles	Cycle Time (seconds)	#1	#2	#3	#4	#5	#6
933 to3110 (19.5 to 65.0)	50	5.29	4.06 (0.16)	25.4 (1.00)	4.31 (0.17)	4.82 (0.19)	24.38 (0.96)	5.08 (0.20)
1555 to 2488 (32.5 to 52.0)	1050	2.69	3.30 (0.13)	22.86 (0.90)	3.04 (0.12)	5.08 (0.20)	20.82 (0.82)	4.57 (0.18)
0 to 1866 (0 to 39.0)	50	6.53	2.54 (0.10)	18.54 (0.73)	2.54 (0.10)	4.82 (0.19)	16.51 (0.65)	2.28 (0.09)
622 to1555 (13.0 to 32.5)	3350	2.86	2.28 (0.09)	17.01 (0.67)	2.03 (0.08)	4.57 (0.18)	15.24 (0.60)	2.28 (0.09)
			Permanent Set					
			1.27 (0.05)	7.62 (0.30)	1.52 (0.06)	2.54 (0.10)	5.58 (0.22)	1.77 (0.07)

Observations: No additional damage or deglazing was observed.

Result: Pass

Note: See Architectural Testing Sketch #1 for indicator locations.

General Note: All testing was performed in accordance with the referenced standards.

Tape and film were not used to seal against air leakage during structural testing.

Drawing Reference: The test specimen drawings have been reviewed by Architectural Testing and are representative of the test specimen reported herein.

List of Official Observers

Name	Company
Bill Smith	Coral Architectural Products
Bill Smith, Jr.	Coral Architectural Products
Jack Hook	Architectural Testing, Inc.
Don Beltz	Architectural Testing, Inc.
John McClane	Architectural Testing, Inc.

Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of four years from the original test date. At the end of this retention period, such materials shall be discarded without notice and the service life of this report will expire.

Results obtained are tested values and were secured by using the designated test methods. If test specimen contains glazing, no conclusions of any kind regarding the adequacy or inadequacy of the glass in the test specimen can be made. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC:

John C. McClane Laboratory Manager Joseph A. Reed, P.E. Director - Engineering and Product Testing

JCM:ck/cmd

Attachments (pages): This report is complete only when all attachments listed are included.
Appendix-A: Test Equipment (1)
Appendix-B: Photographs (7)
Appendix-C: Sketches (2)
Appendix-D: Drawings (16)

87460.01-401-44 Page 10 of 10

Revision Log

Rev. # Date Page(s)

0 06/11/09 N/A

Revision(s)

Original report issue

This report produced from controlled document template ATI 00168, revised 03/05/09.

Appendix A

Test Equipment

Instrument	Manufacturer	Asset #
Control panel	Architectural Testing, Inc.	004821
1" Dial indicator	Starrett	004266
1" Dial indicator	Starrett	004270
1" Dial indicator	Starrett	004271
Water spray rack	Architectural Testing, Inc.	004492
Temperature/ Barometer	Davis	004330

Appendix B

Photographs

Photo No. 1 Test Specimen

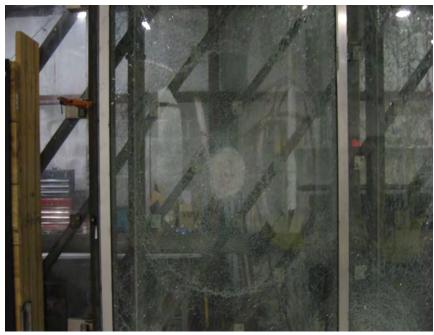


Photo No. 2 Impact #1

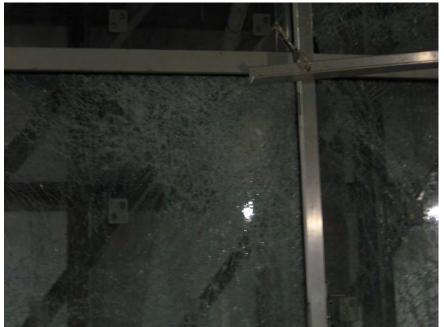


Photo No. 3 Impact #2

Photo No. 4 Impact #3

Photo No. 5 Impact #4

Photo No. 6 Impact #5

Photo No. 7 Impact #6

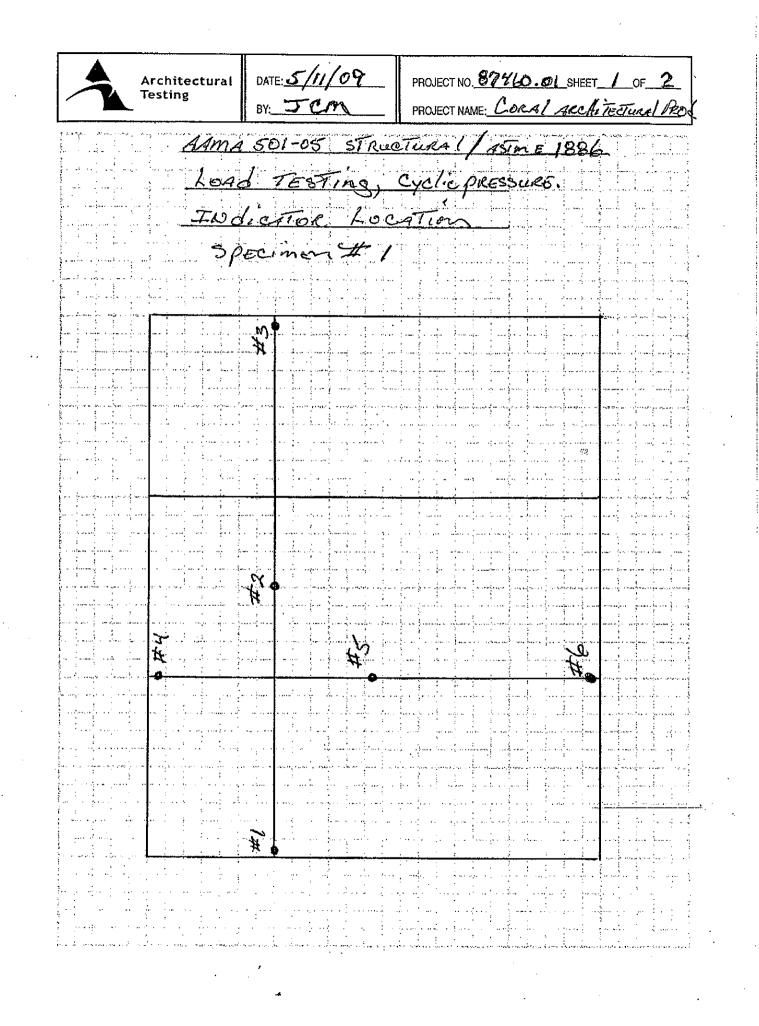
Photo No. 8 Impact #7

Photo No. 9 Impact #8

Photo No. 10 Horizontal and vertical corner connection

Photo No. 11 Horizontal and vertical connection between glass

Photo No. 12 Horizontal and vertical connection at sill


Photo No. 13 Fastener spacing on all pressure plates

87460.01-401-44

Appendix C

Sketches

DATE: 5/11/09 PROJECT NO. 87460.01 SHEET 2 OF 2 Architectural Testing BY: JCM PROJECT NAME: CORAL ARCHITEJUNAL PRO ASTME 1886/1996 LOCATIONS IMPACT PEUMEN -S T S ***** ۰. £ 9 # # ni L L \mathfrak{O} Γ \$ \odot 1 \bigcirc <u>.</u>... dar. # 1..... ÷., ., Same and a second

87460.01-401-44

Appendix D

Drawings

TEST REPORT DRAWINGS PW256 IMPACT-RESISTANT CURTAIN WALL SYSTEM FOR USE IN HURRICANE ZONES REQUIRING LARGE MISSILE IMPACT PROTECTION

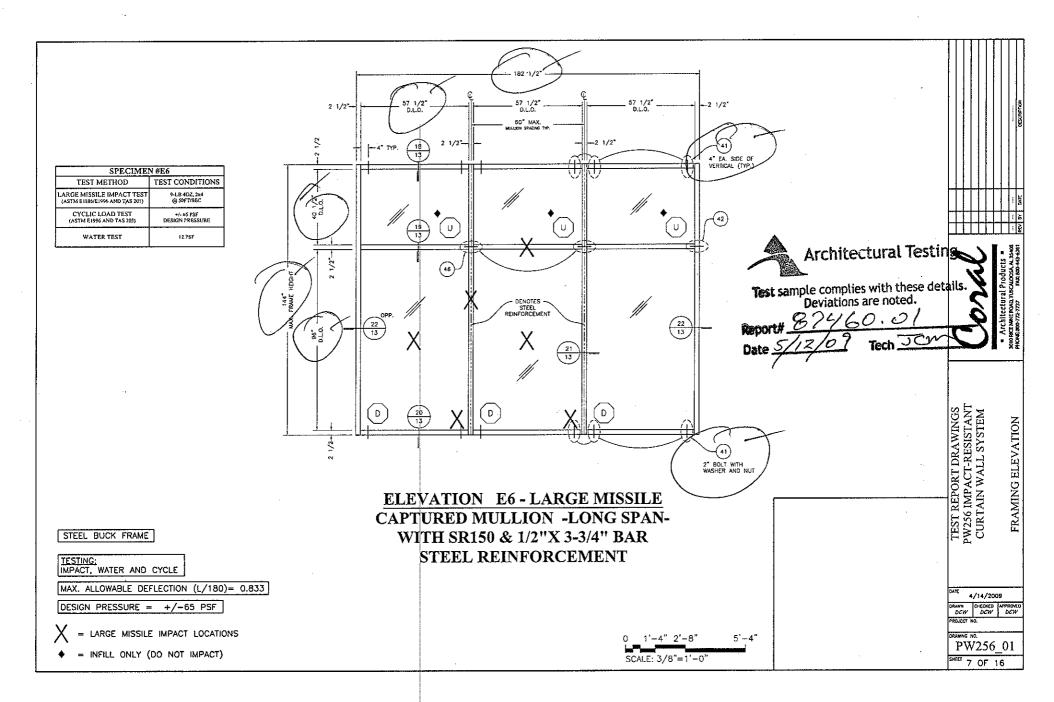
	INDEX TO DRAWINGS
1	INDEX TO DRAWINGS AND NOTES
2	FRAMING ELEVATION - E1 CAPTURED AND B.G. MULLIONS WITH STEEL -LONG SPAN-
3	FRAMING ELEVATION - E2 CAPTURED MULLION WITHOUT STEEL -SHORT SPAN-
4	FRAMING ELEVATION - E3 B.G. MULLION WITHOUT STEEL -SHORT SPAN-
5	FRAMING ELEVATION - E4 CAPTURED MULLION WITH STEEL -LONG SPAN- SMALL MISSILE
6	FRAMING ELEVATION FOR DOORS - ES CAPTURED MULLION WITH STEEL -LONG SPAN-
7	FRAMING ELEVATION - E6 CAPTURED MULLION WITH STEEL - LONG SPAN- LARGE MISSILE
8	FRAMING DETAILS
9	FRAMING DETAILS
10	FRAMING DETAILS
11	DOOR AND FRAMING DETAILS
12	DOOR AND FRAMING DETAILS
13	FRAMING DETAILS
14	BILL OF MATERIALS
15	BILL OF MATERIALS AND GLAZING SCHEDULE
16	DIE DRAWINGS

Date

D.L.O. = DAY LIGHT OPENING D.O.H. = DOOR OPENING HEIGHT D.O.W. = DOOR OPENING WIDTH ELEVS = ELEVATIONS = EXTERIOR INT. = INTERIOR ΜΔΧ A MAXIMUM MIN. = MINIMUM OPP. = TYPICAL TYP

CURTAIN Architectural Testing M Test sample complies with these details. Deviations are noted. 60.0 4/14/2009 CHECKED APPROVED RAWH DCW TEST PW256 01

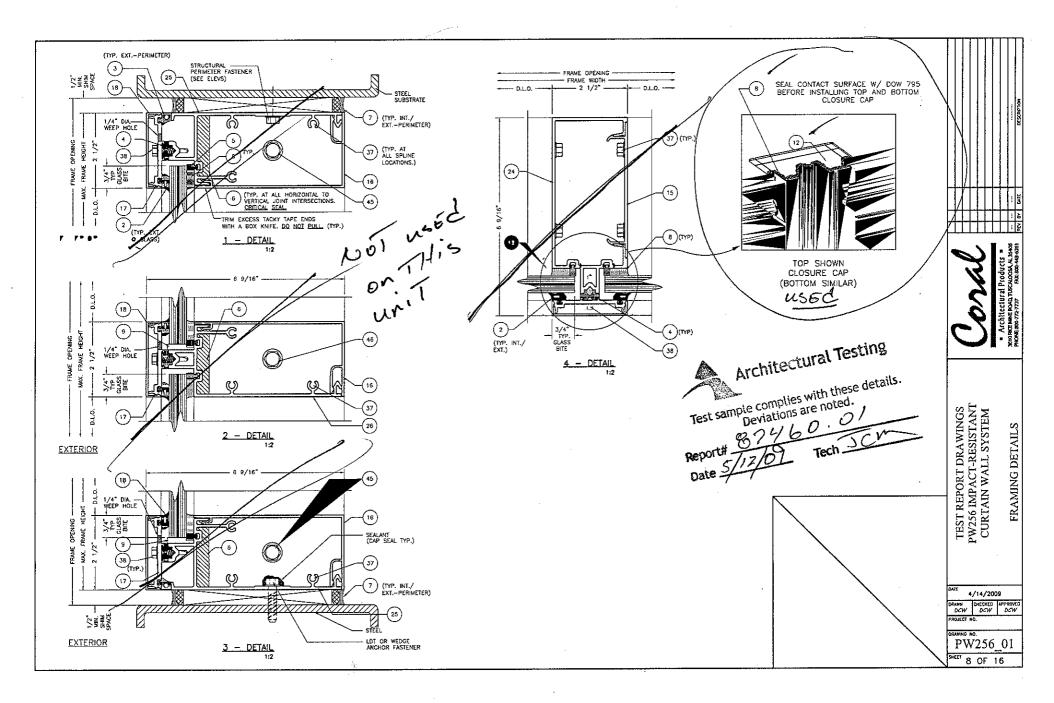
et 1 OF 16

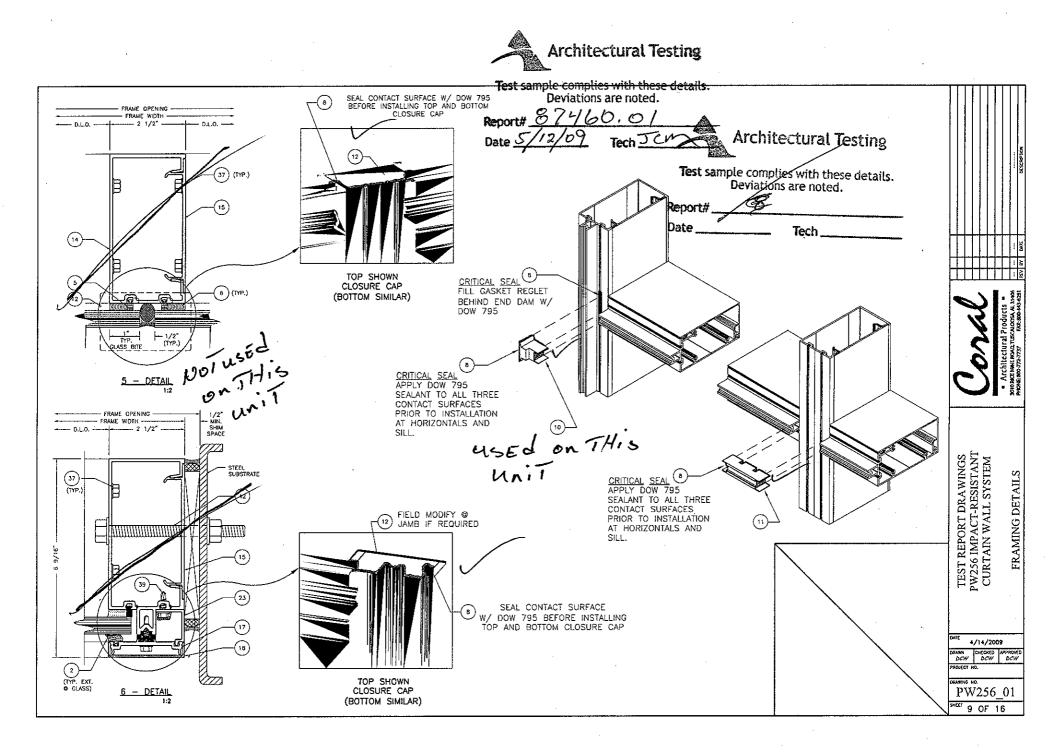

INDEX TO DRAWINGS AND NOTE

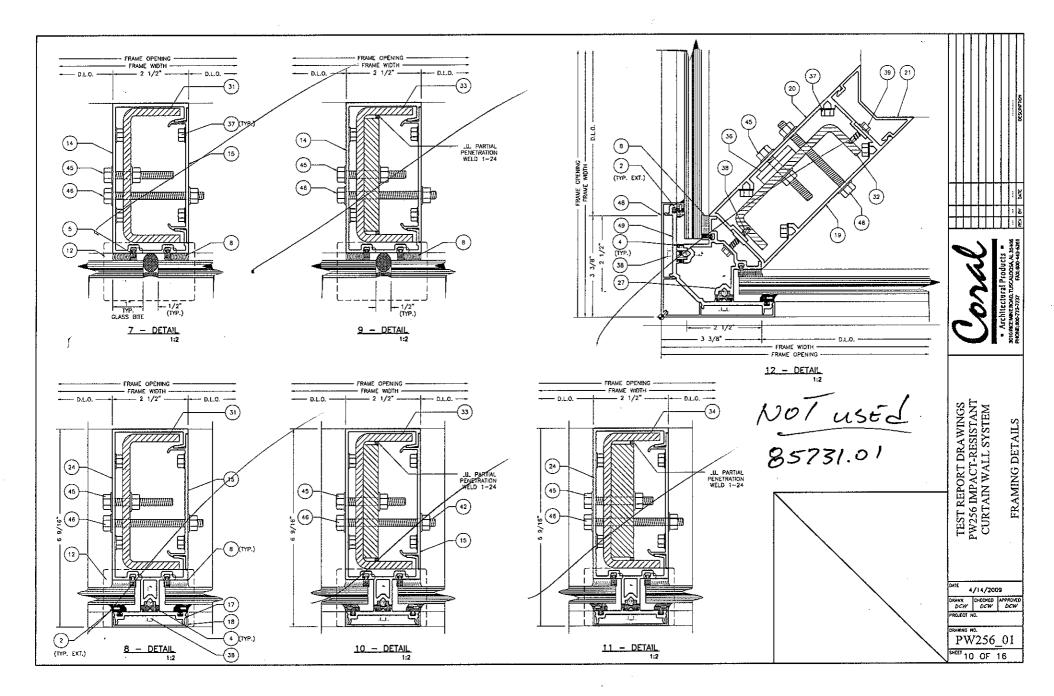
			BILL OF	MATERIALS					
TEM NO.	P/N	DESCRIPTION	DIMENSIONS	MATERIAL	MANUFACTURER	3NOTES			
1	NG5	BULB GASKET - DOORFRAME STOP	0.165 SPACE	EPDM	VARIES				
2	NG10	EXTERIOR GLAZING GASKET	0.250 SPACE	EPDM	VARIES				
3	NG11,	EXTERIOR PERIMETER GASKET	0.300 SPACE	EPDM	VARIES				
4	NG12	PRESSURE BAR GASKET (ISOLATOR)	0.140 SPACE	EPDM	VARIES				
5	NG14	INTERIOR SPACER GASKET	0.250 SPACE	EPDM	VARIES				
6	SM5601	JOINT SEALANT TAPE	0.500 X 0.125 X VARIES	BUTYL	SCHNEE-MOOREHEAD				
7	795	SILICONE - PERIMETER SEALANT	FILL SPACE	SILICONE	DOW CORNING	USED @ PERIMETER			
8	995	SILICONE - GLASS TO METAL	FILL SPACE	SILICONE	DOW CORNING	GLASS TO METAL AND INTERNAL			
9	SB14	SETTING BLOCK @ SILL & HORIZONTAL	0.875 X 0.188 X 4.000	EPDM	VARIES	2 PER LITE			
10	SP202	END DAM @ CAPTURED MULLION	1.287 X 1.068 X 0.745	INJECTION MOLDED PLASTIC	CORAL INDUSTRIES, INC.	LOCATE 1 @ EACH END OF HORIZONTAL			
11	SP206	BRIDGE DAM @ B.G. MULLION	3.123 X 0.843 X 0.745	INJECTION MOLDED PLASTIC	CORAL INDUSTRIES, INC.	LOCATE 1 @ HORIZONTAL AND B.G. MULLION			Ш
12	SP210	MULLION CAP	3.000 X 1.925 X 0.048	6063~T6 ALUMINUM	CORAL INDUSTRIES, INC.	LOCATE C TOP AND BOTTOM OF VERTICAL			_
13	2086	JACKSON 2086 PANIC	36.000 X 7.3125 X 3.000	ALUMINUM	JACKSON			\mathbf{N}	•
14	PW151	B.G. MULLION	2.500 X 5.000 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.			Υ.	
15	PW202	OPEN BACK MULLION FILLER	0.681 X 4.484 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.	· · · · · · · · · · · · · · · · · · ·		2	
16	PW203	HEAD/ SILL/ HORIZONTAL TRIM	2.500 X 4.980 X 0.078	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.			2	2
17	PW204	PRESSURE BAR	2.443 X 0.433 X 0.125	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.				
18	PW205	FACE COVER	2.500 X 0.500 X 0.062	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.		1	R	
19	PW208	FEMALE HALF 90 CORNER	1.625 X 6.110 X 0.094	6053-T6 ALUMINUM	CORAL INDUSTRIES, INC.			4	Ĩ
20	PW209	MALE HALF 90' CORNER	1.875 X 6.110 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.			$-\lambda$	F
21	PW210	INTERIOR CORNER TRIM	2.500 X 1.288 X 0.078	5063-T5 ALUMINUM	CORAL INDUSTRIES, INC.				ľ
22	PW214	SUB DOORFRAME	1.000 X 4.500 X 0.080	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.				
23	PW513	POCKET FILLER FOR PW550	0.937 X 1.193 X 0.078	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.				
24	PW550	VERTICAL MULLION	2.500 X 5.843 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.				
25	PW552	HEAD/SILL	2.390 X 5.637 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.				
26	PW555	INTERMEDIATE HORIZONTAL	2.390 X 5.730 X 0.094	6053-T6 ALUMINUM	CORAL INDUSTRIES, INC.	•			
27	PW556	GLAZING TEE - 90" CORNER	2.584 X 2.584 X 0.094	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.		SS	ΞΣ	
28	DS200	DOORFRAME STOP	0.882 X 1.149 X 0.050	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.		ž :	4 円	
29	TH4	THRESHOLD	0.500 X 4.000 X 0.125	6063-T6 ALUMINUM	CORAL INDUSTRIES, INC.		IA	<u>s</u> 5	
30	TH403	THRESHOLD CLIP	1.390 X 1.516 X 1.909	STEEL	VARIES			35	
			(CONTINUED (ON SHEET 15)		ſ	TEST REPORT DRAWINGS	AIN WALL	
					Architectural Te ble complies with these neviations are noted.	Gelaio	TEST F	CURT	
				Test sami	Deviations are noted. $\frac{7460.0}{2}$			/14/20 CHECKED DCW	

Report#

Tech JCm

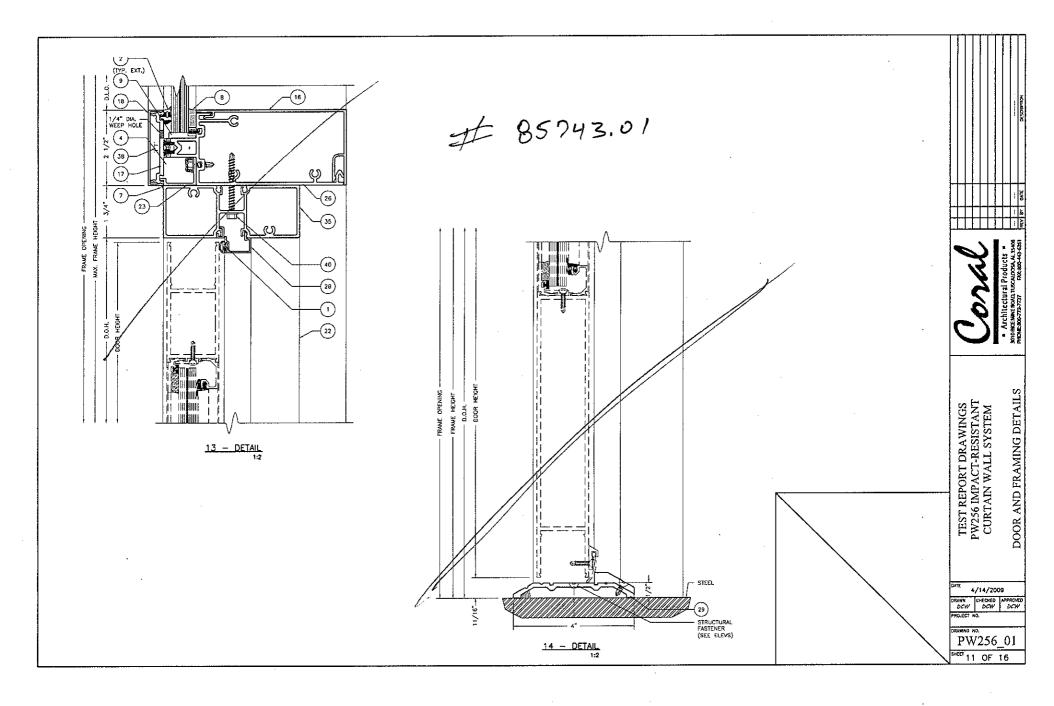

DRAWING NO. PW256_01 SHEET 14 OF 16

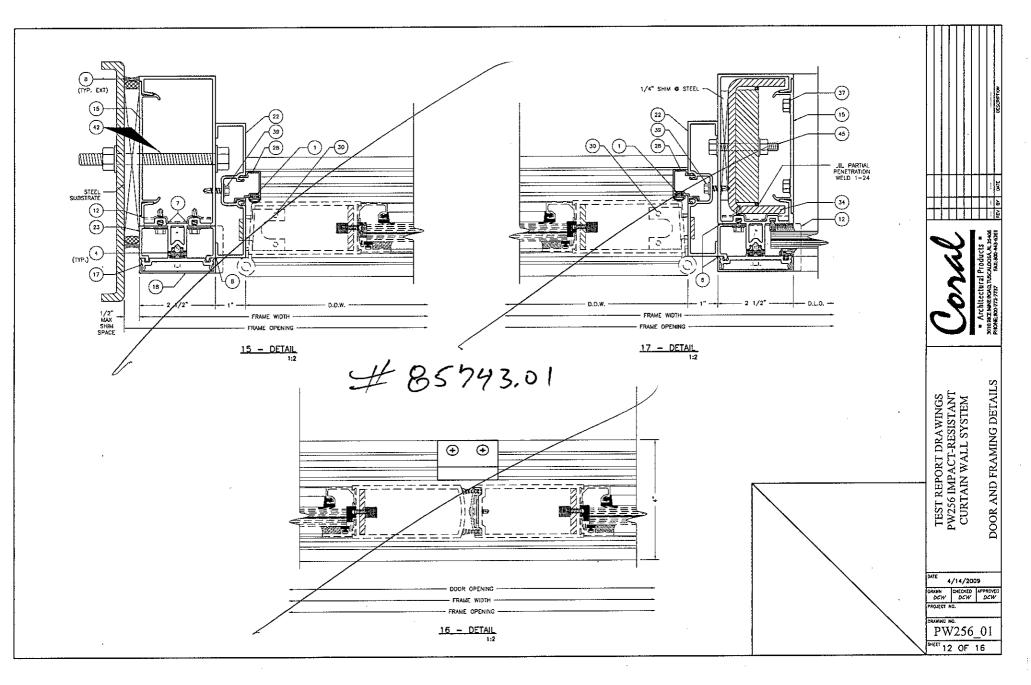


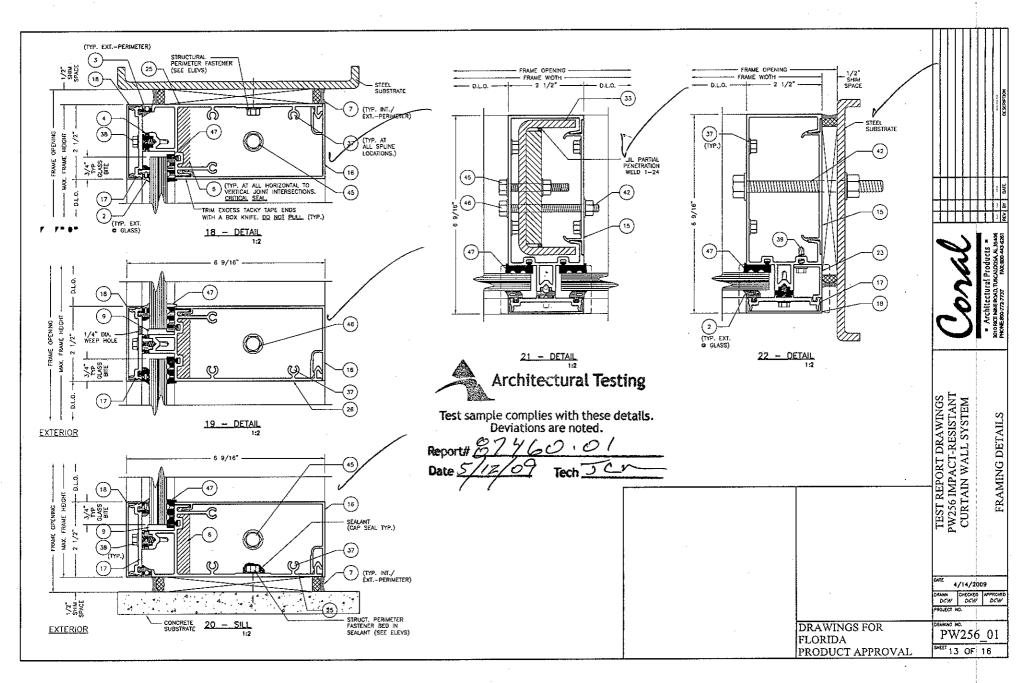

			1			, '		
AND (24	ND (24)	,	11			l		ł
AND (24	ND 🕢		11					ł
AND 🖗] {					
AND 🕑	ND 🕑] [
]]					
						1		
						11	ŧ I	
		. 1					{	
							11	
			ᅬ⊢	┿	++	+	H	+
			┨┝	╂┼	╫	+	H	ł
					<u>,</u>			* *
				S	と	21	Ĭ	1 1 1 1
				١	1	5	Produ	NCON
					Ċ	•	1412	AD THE
					Ç	١٤	-bitec	
				C)	٩.	2010 010
						- 1	4	8

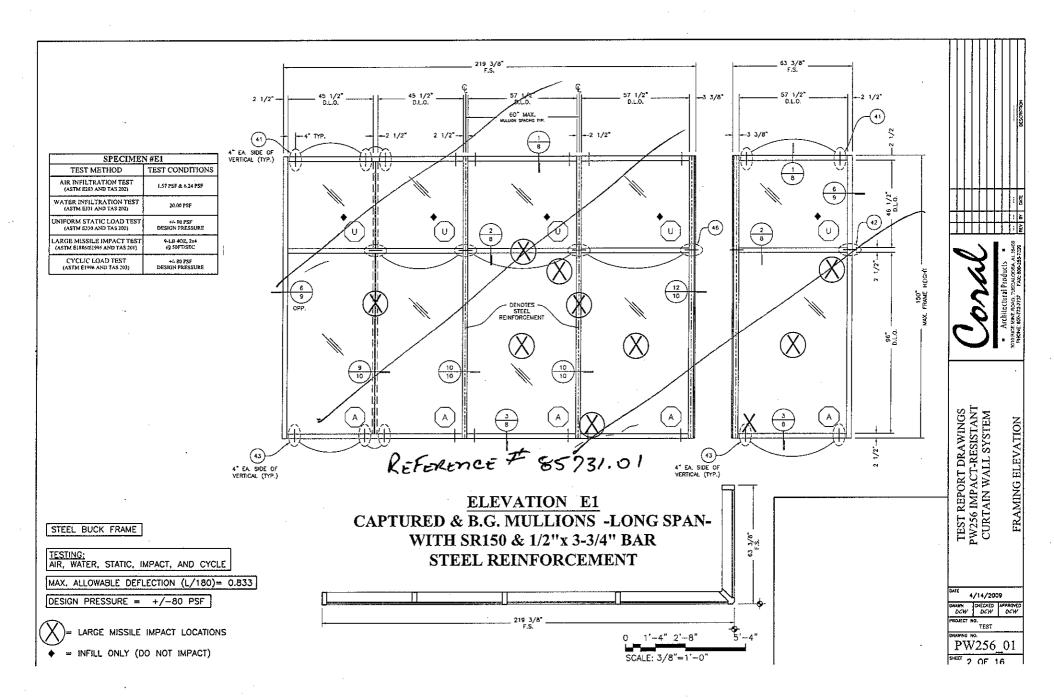
GLASS MARK	GLASS DESCRIPTION	MANUFACTURER	MAXIMUM D.L.O. SIZE (INCHES)	SQUARE FEET	MAXIMUM DESIGN PRESSURE (PSF
	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A 0.075 VENCEVA INTERLAYER	SOLUTIA	57-1/2" X 96"	38.3	± 80
В	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A 0.090 SOLUTIA SAFLEX PVB INTERLAYER	SOLUTIA	45-1/2" X 96"	30.3	± 65
B6	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A 0.060 SOLUTIA SAFLEX PVB INTERLAYER	SOLUTIA	57-1/2" X 96"	38.3	± 80
	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A SGP (SENTRY GLASS PLUS) INTERLAYER	DUPONT	57-1/2" X 96"	38.3	± 65
	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A 0.120 UVEKOL TYPE "S" INTERLAYER	CORAL INDUSTRIES, INC.	45-1/2" X 95"	30.3	± 65
(U6)	9/16" OVERALL THICKNESS LAMINATED GLASS CONSISTING OF TWO 1/4" H.S. GLASS AND A 0.060 UVEKOL TYPE "S" INTERLAYER	CORAL INDUSTRIES, INC.	57-1/2" X 96"	38.3	± 80

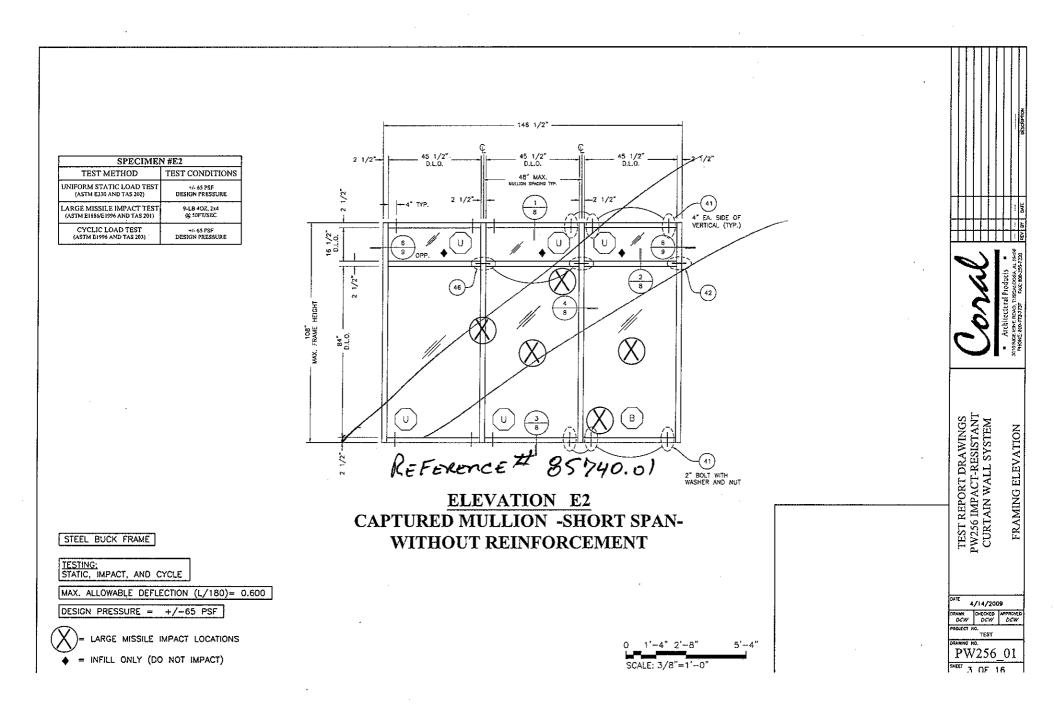
Architectural Testing BILL OF MATERIALS AND GLAZING SCHEDULE Test sample complies with these detailines Deviations are noted. Report# 87460.01 Date 5/12/07 Tech Complexity Market Strategy Tech Complexity Date 5/12/07 Tech DRAWN DHECKED APPROVED DRAWN DHECKED APPROVED DCW DCW DCW ROJECT PW256_01 SHEEF 15 OF 16

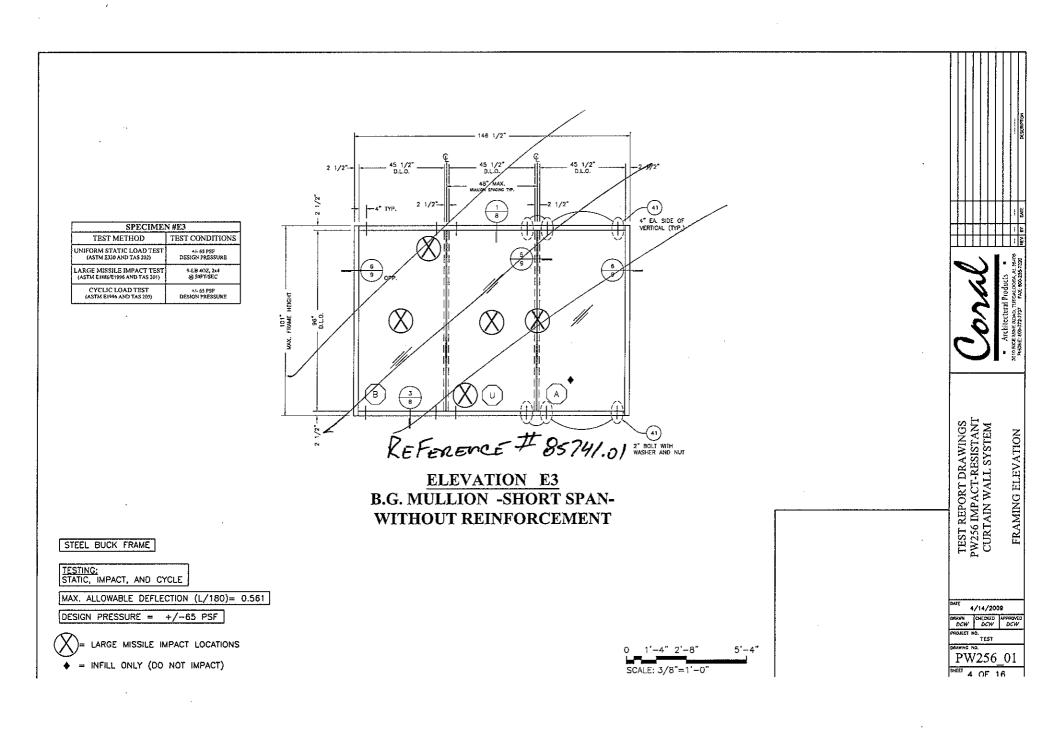


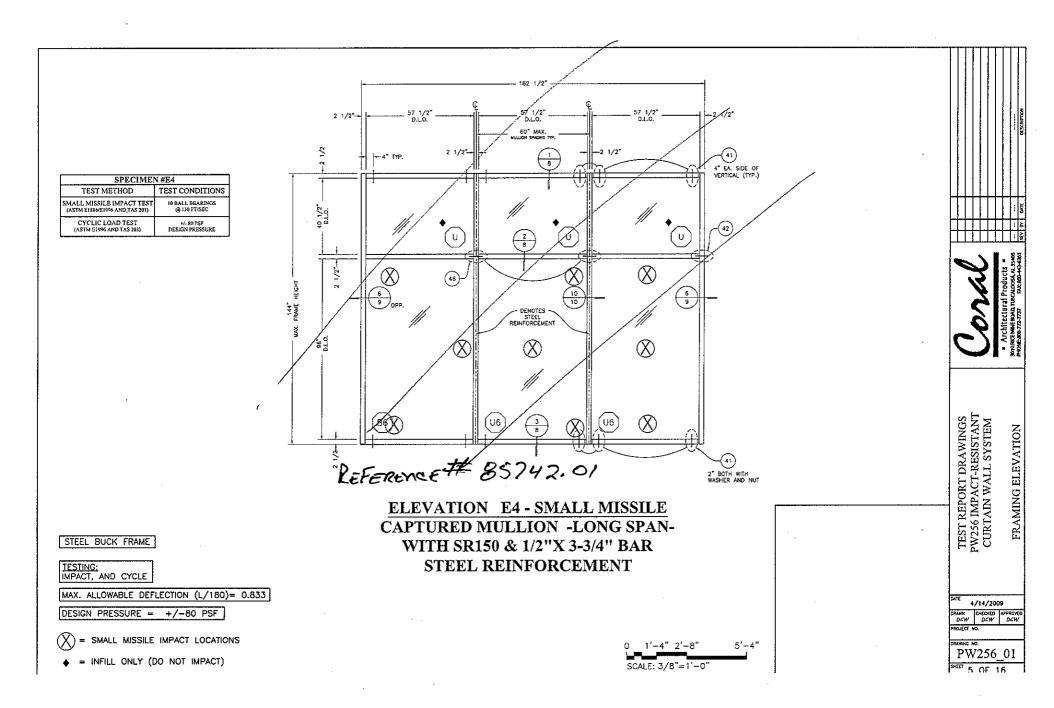



.


• •






•

