

NFRC 102-2004 THERMAL PERFORMANCE TEST REPORT

Rendered to:

CORAL ARCHITECTURAL PRODUCTS

SERIES/MODEL: FS400T Storefront System TYPE: Glazed Wall Systems (Site-built)

Summary of Results			
Standardized Thermal Transmittance (U-Factor) 0.44			
Unit Size 78-7/8" x 78-3/4" (2003 mm x 2000 mm)			
Layer 1 3/16" Clear Annealed Gap 1 0.47" Gap, Super Spacer (ZF-S), Air-Filled*			
Gap 1 0.47" Gap, Super Spacer (ZF-S), Air-Filled*			
Layer 2 3/16" AFG Comfort Ti-R (e=0.035*, #3) Annealed			

Reference must be made to Report No. 93279.01-116-46, dated 10/08/09 for complete test specimen description and data.

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

NFRC 102-2004 THERMAL PERFORMANCE TEST REPORT

Rendered to:

CORAL ARCHITECTURAL PRODUCTS 3010 Rice Mine Road Tuscaloosa, Alabama 35406

Report Number: 93279.01-116-46

Test Date: 10/03/09 Report Date: 10/08/09 Expiration Date: 10/03/13

Test Sample Identification:

Series/Model: FS400T Storefront System

Type: Glazed Wall Systems (Site-built)

Overall Size: 78-7/8" x 78-3/4" (2003 mm x 2000 mm) (Model Size) **NFRC Standard Size**: 78.7" x 78.7" (2000 mm wide x 2000 mm high)

Test Sample Submitted by: Client

Test Sample Submitted for: 0

Test Procedure: U-factor tests were performed in a Guarded Hot Box in accordance with NFRC 102-2004, *Test Procedure for Measuring the Steady-State Thermal Transmittance of Fenestration Systems*.

Test Results Summary:

Standardized U-factor (Ust): 0.44 Btu/hr·ft²·F CTS Method

Test Sample Description:

CONSTRUCTION	Frame
Size (in.)	78-7/8" x 78-3/4"
Daylight Opening (in.)	36-3/8" x 74-5/8" (x2)
CORNERS	Butt
Fasteners	Screws
Sealant	Yes
MATERIAL	AU (0.18") *
Color Exterior	Gray
Finish Exterior	Anodized
Color Interior	Gray
Finish Interior	Anodized
GLAZING METHOD	Pocket

^{*} Thermal Break is poured and skipped debridged, skip is 2-1/2"

Glazing Information:

Layer 1 3/16" Clear Annealed	
Gap 1 0.47" Gap, Super Spacer (ZF-S), Air-Filled*	
Layer 2 3/16" AFG Comfort Ti-R (e=0.035*, #3) Annealed	
Gas Fill Method	N/A*

^{*}Stated per Client/Manufacturer N/A Non-Applicable See Description Table Abbreviations

Test Sample Description: (Continued)

OMPONENTS			
	Туре	Quantity	Location
WEAT	HERSTRIP		
Wed	dge Gasket	1 Row	Interior and exterior glazing perimete
HARD	WARE	I	
No l	hardware		
DRAIN	AGE	l	1
No	visible weeps		

Thermal Transmittance (U-factor)

Measured Test Data

Hoot	\mathbf{F}	AXX/6
пеац	\mathbf{r}	OWS

1. Total Measured Input into Metering Box (Qtotal)	1473.04 Btu/hr
2. Surround Panel Heat Flow (Q _{sp})	47.25 Btu/hr
3. Surround Panel Thickness	8.00 inches
4. Surround Panel Conductance	0.0261 Btu/hr·ft ² ·F
5. Metering Box Wall Heat Flow (Qmb)	20.81 Btu/hr
6. EMF vs Heat Flow Equation (equivalent information)	0.0196*EMF + 0.020
7. Flanking Loss Heat Flow (Q ₁)	17.90 Btu/hr
8. Net Specimen Heat Loss (Q _s)	1387.08 Btu/hr

Areas

1. Test Specimen Projected Area (A _s)	43.13 ft^2
2. Test Specimen Interior Total (3-D) Surface Area (Ah)	57.06 ft ²
3. Test Specimen Exterior Total (3-D) Surface Area (Ac)	50.83 ft^2
4. Metering Box Opening Area (Amb)	69.44 ft^2
5. Metering Box Baffle Area (Abl)	60.74 ft^2
6. Surround Panel Interior Exposed Area (A _{sp})	26.31 ft^2

Test Conditions

1. Average Metering Room Air Temperature (t _h)	69.80 F
2. Average Cold Side Air Temperature (t _c)	-0.39 F
3. Average Guard/Environmental Air Temperature	71.26 F
4. Metering Room Average Relative Humidity	4.98 %
5. Measured Cold Side Wind Velocity (Perpendicular Flow)	17.07 mph
6. Measured Static Pressure Difference Across Test Specimen	$0.00" \pm 0.04" H_2O$

Results

1.	Thermal Transmittance of Test Specimen (U _s)	0.46 Btu/hr·ft ² ·F
2.	Standardized Thermal Transmittance of Test Specimen (U _{st})	0.44 Btu/hr·ft ² ·F

Thermal Transmittance (U-factor)

Calculated Test Data

CTS Method

2 2 2 1 2 4 1	
1. Emittance of Glass (e ₁)	0.84
2. Warm Side Baffle Emittance (e _{b1})	0.92
3. Equivalent Warm Side Surface Temperature	46.03 F
4. Equivalent Cold Side Surface Temperature	5.56 F
5. Warm Side Baffle Surface Temperature	67.89 F
6. Measured Warm Side Surface Conductance (h _h)	1.35 Btu/hr·ft ² ·F
7. Measured Cold Side Surface Conductance (h _c)	5.40 Btu/hr·ft ² ·F
8. Test Specimen Thermal Conductance (C _s)	0.79 Btu/hr·ft ² ·F
9. Convection Coefficient (Kc)	$0.31 \text{ Btu/(hr·ft}^2 \cdot \text{F}^{1.25})$
10. Radiative Test Specimen Heat Flow (Q _{r1})	697.44 Btu/hr
11. Conductive Test Specimen Heat Flow (Qc1)	689.64 Btu/hr
12. Radiative Heat Flux of Test Specimen (q _{r1})	16.17 Btu/hr·ft ² ⋅F
13. Convective Heat Flux of Test Specimen (qcl)	15.99 Btu/hr·ft ² ·F
14. Standardized Warm Side Surface Conductance (hsth)	1.21 Btu/hr·ft ² ·F
15. Standardized Cold Side Surface Conductance (hstc)	5.28 Btu/hr·ft ² ·F
16. Standardized Thermal Transmittance (U _{st})	0.44 Btu/hr·ft ² ·F

Test Duration

- 1. The environmental systems were started at 16:39 hours, 10/02/09.
- 2. The test parameters were considered stable for two consecutive four hour test periods from 06:56 hours, 10/03/09 to 14:56 hours, 10/03/09.
- 3. The thermal performance test results were derived from 10:56 hours, 10/03/09 to 14:56 hours, 10/03/09.

The reported Standardized Thermal Transmittance (Ust) was determined using CTS Method, per Section 8.2(A) of NFRC 102.

Glazing Deflection (in):

	Left Glazing	Right Glazing
Edge Gap Width	0.47	0.47
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.47	0.44
Center gap width at laboratory ambient conditions on day of testing	0.47	0.44
Center gap width at test conditions	0.47	0.44

The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

A calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN 000001) in York, Pennsylvania was conducted in April 2009 in accordance with Architectural Testing Inc. calibration procedure.

"This test method does not include procedures to determine the heat flow due to either air movement through the specimen or solar radiation effects. As a consequence, the thermal transmittance results obtained do not reflect performances which may be expected from field installations due to not accounting for solar radiation, air leakage effects, and the thermal bridge effects that may occur due to the specific design and construction of the fenestration system opening. Therefore, it should be recognized that the thermal transmittance results obtained from this test method are for ideal laboratory conditions and should only be used for fenestration product comparisons and as input to thermal performance analyses which also include solar, air leakage and thermal bridge effects."

"Ratings included in this report are for submittal to an NFRC-licensed IA for certification purposes and are not meant to be used for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labeling purposes."

The test sample was installed in a vertical orientation, the exterior of the specimen was exposed to the cold side. The direction of heat transfer was from the interior (warm side) to the exterior (cold side) of the specimen.

ANSI/NCSL Z540-2-1997 type B uncertainty for this test was 1.53%.

Detailed drawings, data sheets, representative samples of the test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. until 10/3/2013. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing, Inc. will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. Ratings included in this report are for submittal to an NFRC licensed IA for certification purposes and are not meant to be used for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labeling purposes. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.	
Tested By:	Reviewed By:
Benjamin W. Green	Shon W. Einsig
Technician	Senior Technician
	Individual-In-Responsible-Charge
BWG:kmm	
93279.01-116-46	
Attachments (pages): This report is complete only v Appendix-A: Description Table Abbreviat	

Appendix-B: Drawings (6)

Revision Log

Rev.#	Date	Page(s)	Revision(s)
.01R0	10/08/09	All	Original Report Issue. Work requested by
			David Welch of Coral Architectural Products

This report produced from controlled document template ATI 00025, revised 10/08/08..

Appendix A: Description Table Abbreviations

CODE	Frame / Sash Types					
ΑI	Aluminum w/ Vinyl Inserts (Caps)					
AL	Aluminum					
AP	Aluminum w/ Thermal Breaks - Partial					
AS	Aluminum w/ Steel Reinforcement					
AT	Aluminum w/ Thermal Breaks - All Members (≥ 0.21")					
AU	Aluminum Thermally Improved - All Members (0.062" - 0.209")					
AV	Aluminum / Vinyl Composite					
AW	Aluminum-clad Wood					
FG	Fiberglass					
PA	ABS Plastic w/ All Members Reinforced					
PC	ABS Plastic-clad Aluminum					
PF	ABS Plastic w/ Foam-filled Insulation					
PH	ABS Plastic w/ Horizontal Members Reinforced					
PI	ABS Plastic w/ Reinforcement - Interlock					
PL	ABS Plastic					
PP	ABS Plastic w/ Reinforcement - Partial					
PV	ABS Plastic w/ Vertical Members Reinforced					
PW	ABS Plastic-clad Wood					
ST	Steel					
VA	Vinyl w/ All Members Reinforced					
VC	Vinyl-clad Aluminum					
VF	Vinyl w/ Foam-filled Insulation					
VH	Vinyl w/ Horizontal Members Reinforced					
VI	Vinyl w/ Reinforcement - Interlock					
VP	Vinyl w/ Reinforcement - Partial					
VV	Vinyl w/ Vertical Members Reinforced					
VW	Vinyl-clad Wood					
VY	Vinyl					
WA	Aluminum / Wood composite					
WD	Wood					
WV	Vinyl / Wood composite					
WF	Fiberglass/Wood Combination					
WC	Composite/Wood Composite (Shaped vinyl/wood composite members					
CW	Copper Clad Wood					
CO	Vinyl/Wood Composite Material					

CODE	a m a
CODE	Spacer Types (See sealant)
A1	Aluminum
A2	Aluminum (Thermally-broken)
A3	Aluminum-reinforced Polymer
A4	Aluminum / Wood
A5	Aluminum-reinforced Butyl (Swiggle)
A6	Aluminum / Foam / Aluminum
A7	Aluminum U-shaped
A8	Aluminum-Butyl (Corrugated) (Duraseal)
ER	EPDM Reinforced Butyl
FG	Fiberglass
GL	Glass
OF	Organic Foam
P1	Duralite
PU	Polyurethane Foam
SU	Stainless Steel, U-shaped
CU	Coated Steel, U-shaped (Intercept)
S2	Steel (Thermally-broken)
S3	Steel / Foam / Steel
S5	Steel-reinforced Butyl
S6	Steel U-channel w/ Thermal Cap
SS	Stainless Steel
CS	Coated Steel
TP	Thermo-plastic
WD	Wood
ZE	Elastomeric Silicone Foam
ZF	Silicone Foam
ZS	Silicone / Steel
N	Not Applicable
TS	Thermo-plastic w/ stainless steel substrate

CODE	Tint Codes
AZ	Azurlite
BL	Blue
BZ	Bronze
CL	Clear
EV	Evergreen
GD	Gold
GR	Green
GY	Gray
LE	Low 'e' Coating
OT	Other (use comment field)
RC	Solar or Reflective Coating
RG	Roller Shades between glazing
RS	Silver (reflective coating)
SF	Suspended Polyester Film
SR	Silver
BG	Blinds between the Glazing
DV	Dynamic Glazing-Variable
DY	Dynamic Glazing-NonVariable

	Gap Fill Codes
AIR	Air
AR2	Argon/Krypton Mixture
AR3	Argon / Krypton / Air
ARG	Argon/Air
CO2	Carbon Dioxide
KRY	Krypton/Air
SF6	Sulfur Hexaflouride
XE2	Xenon/Krypton/Air
XE3	Xenon/Argon/Air
XEN	Xenon/Air
N	Not Applicable

	DOOR DETAILS
N	Not Applicable
CODE	Door Type
EM	Embossed
FL	Flush
LF	Full Lite
LH	1/2 - Lite
LQ	1/4 - Lite
LT	3/4 - Lite
RP	Raised Panel
CODE	Skin
AL	Aluminum
FG	Fiberglass
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	Panel
FG	Fiberglass
PL	Plastic
WP	Wood - Plywood
WS	Wood - Solid
CODE	
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	Core Fill
СН	Cellular - Honeycomb
EP	Expanded Polystyrene
PI	Polyisocyanurate
PU	Polyurethane
WP	Wood - Plywood
WS	Wood - Solid
XP	Extruded Polystyrene

CODE	Spacer Sealant
D	Dual Seal Spacer System
S	Single Seal Spacer System

CODE	Grid Description
N	No Muntins
G	Grids between glass
S	Simulated Divided Lites
T	True Muntins

ı	CODE	Grid Size Codes
		Blank for no grids
	0.75	Grids < 1"
	1.5	Grids >= 1"

CODE	Thermal Breaks
F	Foam
U	Urethane
V	Vinyl
FB	Fiberglass
О	Other
AB	ABS
NE	Neoprene
ΑI	Air
N	Not Applicable
P	Polyamide

Appendix B: Submittal Form and Drawings

THERMAL TEST REPORT DRAWINGS
FOR FS400T FRAMING SYSTEM

INDEX TO DRAWINGS
SHEET 1 INDEX TO DRAWINGS
SHEET 2 TYPICAL ELEVATION
SHEET 3 FRAMING DETAILS
SHEET 4 FRAMING DETAILS
SHEET 5 BILL OF MATERIALS

Architectural Products # Architectural Approach # 1 aeroe # House Mand Mondon Truscal Per Second # 1 aeroe # 1 aer

Test sample complies with these details. Deviations are noted.

16 Report] Safe

182

INDEX TO DRAWINGS

THERMAL TEST REPORT DRAWINGS FOR FS400T FRAMING SYSTEM

PS400T 02

SHEET 1 OF 5

PROJECT NO.
HLT THERMAL TEST 7. 6-26-09
RAWN CHECKED AP

ABBREVIATIONS: D.L.O. = DAY LIGHT OPENING

LOF MATERIALS

NOLTAIRD2230

				**********				1	<u>"</u>		-									1301
	NOTES	EXTERIOR/INTERIOR @ GLASS	4" LONG												TYPICAL SPLINE SCREW		The state of the s	The second secon		USED AT HORIZ, TO VERT. JOINT INTERSECTIONS
	MANUFACTURER	VARIES	VARIES			CORAL	CORAL	CORAL	CORAL	CORAL		CORAL	CORAL	CORAL	VARIES	VARIES				SCHNEE-MOREHEAD
	MATERIAL	EPDM	EPDM			6036-T6 ALUMINUM	6036-T6 ALUMINUM	RIGID PVC	6063-T6 ALUMINUM	6063-T6 ALUMINUM		6063-76 ALUMINUM	6063-T6 ALUMINUM	6063-T6 ALUMINUM	STEEL	STEEL			The state of the s	BUTYL
)	DIMENSIONS	.197 SPACE	0.625 X 4.000 X 1.500			2.000 x 4.500 x 0.700	2.000 x 4.500 x 0.700	3.313 X 4.813 X 0.063	2.000 x 4.500 x 0.070	0.265 x 2.50 x 0.062		1.135 x 2.792 x 0.050	2.000 x 4.500 x 0.700	2.312 X 4.788 X 0.078	#14 X 1" HHSTS	#6 X 1/4" PPH				1/8" x 1/2/" VARIES
	DESCRIPTION	GLAZING GASKET EXTERIOR/INTERIOR	SETTING BLOCK AT INTERM. HORIZONTAL			THERMAL HEAD	THERMAL JAMB	END DAM	VERTICAL MULLION	MULLION FILLER		GLASS STOP	SIFF	SUBSILL FLASHING	SPLINE ASSEMBLY SCREW	ASSEMBLY SCREW				JOINT SEALANT TAPE
	PART#	NG1	SB3	NOT USED	NOT USED	FS401T	FS407T	ED339-1	FS404T	FS405	NOT USED	FS403	FS402T	FL339T	AS16	AS31	NOT USED	NOT USED	NOT USED	SM5601
	ITEM NO.	F-00	2	3	4	S	g	7	∞	6	10	11	12	13	41	15	16	17	18	61

Architectural Products
 Architectural Products
 Architectural Procuposes
 Parameter Reserves
 Parameter Reserves

	1	
	MAXIMUM SQUARE FEET	18.882
	MAXIMUM D.L.O. SIZE	36 3/8" x 74 3/4"
HEDULE	MANUFACTURER	VARIES
GLAZING SCHEDULE	GLASS TYPE	1" IG -1/4" SOLAR COOL GRAY, 1/2" SPACER, 1/4" LOW E CLEAR #3 SURFACE
	GLASS MARK SYMBOL	A

EOK EL300T FRAMING SYSTEM
THERMAL TEST REPORT DRAWINGS

BILL OF MATERIALS

Test sample complies with these details. Deviations are noted. Architectural Testing

PROJECT NO. ILLY THERMAL TEST DRAWNG NO. PS400T_02

EET 5 OF 5

NATE 6-26-09

RAWN CHECKED APPROVED

MLL DCW DCW

Reports.

120

180

BETWEEN YOU AND THE ELEMENTS

Standard

Technical Specification

Test sample complies with these details. Super Spacer® Deviations are noted.

Report#

Date 0 Super Spacer Standard is a flexible, organic foam spacer product that provides excellent perimeter insulation for sealed glazing units. Desiccant-filled with pre-applied side adhesive, the structural foam spacer significantly simplifies insulating glass production. Featuring a vapour barrier backing, the product must be used in combination with conventional IG sealants such as hot melt butyl, polyurethane or solvent-free polysulfide. Dual seal equivalent sealants may also be used (reference IG sealants Technical Bulletin RD0018).

Characteristics	Norm	Specification / Typical Value	
Composition:		Foam EPDM (Ethylene Propylene Diene Monomer) bas with desiccant pre-fill	
Performance Characteristics: Thermal conductivity Colours Gas / Moisture vapour barrier Primary structural seal	ASTM C518 — ASTM F1249 ASTM D3985	0.162 W/mK Light Grey, Medium Grey, Black WVTR < 0.020 gm/m²/day Oxygen < 0.009 cc/m²/day Acrylic adhesive	
Physical Characteristics: Density Specific Gravity Hardness	ASTM D1056 ASTM D1056 ASTM D2240	50 - 65 pcf 0.800 - 1.041 g/cm³ 88 shore 00	
Dimensions:	THE CONTRACT OF THE CONTRACT O	Reference attached table	
Desiccant fill	#660550000019460000000000000000000000000000000	40% by weight	
Intermittent temperature range	Notice and Control of the Control of	-40°C to 121°C / -40°F to 250°F	
Compatible secondary sealants		HMB, PU, PS, DSE (Curable HMB) Reference IG sealants Technical Bulletin RD0018	
Fogging	EN 1279 - 6 ASTM 774 HIGS 2190 CGSB 12.8	No fog in visual area No fog in visual area No fog in visual area No fog in visual area	
Gas Retention	EN 1279 - 3	Pass	
I.G. Durability	EN 1279 - 2 ASTM 773 CGSB 12.8	Pass Pass Pass	

Standard

Technical Specification

Super Spacer®

Test sample complies with these details.
Deviations are noted.

Date <u>(2) 06/09</u> Te

Pressure-sensitive acrylic adhesive

Multi-layer vapour barrier

93274.01

(A) Width mm	(A) Width inches	Meter/ Reel 3.281	Feet/ Reel	Meter/ Auto Reel	Feet/ Auto Reel
4.8	3/16	610	2000	N/A	N/A
6.4	1/4	457	1500	1372	4500
7.9	5/16	335	1100	1006	3300
9.5	3/8	305	1000	914	3000
11.1	7/16	274	900	823	2700
11.9	15/32	244	800	731	2400
12.7	1/2	244	800	731	2400
14.3	9/16	213	700	640	2100
15.9	5/8	206	675	617	2025
17.5	11/16	183	600	549	1800
19.1	3/4	175	575	526	1725
20	0.798	152	500	457	1500

Spacer Sizes

Super Spacer Standard is available in a standard 5mm (3/16") thickness and a full range of spacer widths from 4.8mm (3/16") to 20mm (.798").

Continuous Packaged Length

For regular insulating-glass production, Super Spacer Standard is supplied on reels with the continuous packaged length varying depending on the spacer width.

Protective Packaging

To provide desiccant protection, the reels are sealed in moisture-proof foil bags and then packaged in high-density polyethylene bags. These double-packaged reels are then shipped in recyclable cardboard boxes.

Desiccant Systems

Over 40% by spacer weight is desiccant material, and the low-deflection blend primarily consists of 3A molecular-sieve material.