

MIAMI-DADE COUNTY PERFORMANCE TEST REPORT

Report No.: B1028.01-401-18

Rendered to:

CORAL ARCHITECTURAL PRODUCTS Tuscaloosa, Alabama

PRODUCT TYPE: Aluminum Storefront SERIES/MODEL: FL500

This report contains in its entirety:

Cover Page:1 pageReport Body:12 pagesSketches:2 pagesPhotographs:7 pagesDrawings:7 pages

Test Dates:	06/30/11
Through:	07/08/11
Report Date:	01/03/12
Test Record Retention End Date :	07/08/21
Miami-Dade County Notification No.:	ATIFL 11003

1.0	Report Issued To:	Coral Architectural Products 3010 Rice Mine Road Tuscaloosa, Alabama 35406
2.0	Test Laboratory:	Architectural Testing, Inc. 2250 Massaro Boulevard Tampa, Florida 33619 813-628-4300

3.0 Project Summary:

- **3.1 Product Type**: Aluminum Storefront
- 3.2 Series/Model: FL500
- **3.3 Compliance Statement**: Results obtained are tested values and were secured by using the designated test methods. The samples were tested per Florida Building Code, Test Protocols for High Velocity Hurricane Zone, Protocols TAS 201-94, TAS 202-94 and TAS 203-94. The three samples tested met the performance requirements set forth in the protocols for a ±70.0 psf *Design Pressure* rating.
- 3.4 Miami-Dade County Notification No.: ATIFL 11003
- 3.5 Test Dates: 06/30/2011 07/08/2011
- **3.6 Test Location**: Architectural Testing, Inc. test facility in Tampa, Florida.
- **3.7 Test Sample Source**: The test specimens were provided by the client. Representative samples of the test specimens will be retained by Architectural Testing for a minimum of ten years from the test completion date.
- **3.8 Drawing Reference**: The test specimen drawings have been reviewed by Architectural Testing and are representative of the test specimens reported herein. Test specimen construction was verified by Architectural Testing per the drawings located in Appendix C. Any deviations are documented herein or on the drawings.

3.9 List of Official Observers:

<u>Name</u>

<u>Company</u>

Coral Architectural Products
Coral Architectural Products
Architectural Testing, Inc.

4.0 Test Specification(s):

TAS 201-94, Impact Test Procedures.

TAS 202-94, Criteria for Testing Impact and Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure Loading.

TAS 203-94, Criteria for Testing Products Subject to Cyclic Wind Pressure Loading.

5.0 Test Specimen Description:

5.1 Product Sizes:

Overall Area : 150.0 ft ²	Width (inches)	Height (inches)
Overall size	180	120

5.2 Frame Construction:

Frame Member	Material	Description	
Hoad	Extruded	Poteronce Drawing No. ELEOO. 04. Sheet No. 7	
пеац	aluminum	Reference Drawing No. FL300_04, Sheet No. 7	
Cill	Extruded	Peterongo Drawing No. ELEOO 04 Sheet No. 7	
5111	aluminum	Reference Drawing No. FL300_04, Sheet No. 7	
Vortical mullion	Extruded	Peterongo Drawing No. ELEOO 04 Sheet No. 7	
vertical inumon	aluminum	Reference Drawing No. FL300_04, Sheet No. 7	
Horizontal	Extruded	Poference Drawing No. EL 500.04 Sheet No. 7	
mullion	aluminum	Reference Drawing NO. FL500_04, Sheet NO.	
Lavaha	Extruded	Deference Drawing No. ELEOO. 04. Sheet No. 7	
Jamos	aluminum	Kelerence Drawing No. FL500_04, Sheet No. 7	

	Joinery Type	Detail	
All corners	Mechanical	The corners were butt joints, sealed with $1/2$ " x $1/8$ " butyl sealant tape on the interior side only, and secured to adjoining members with two hex washer head $1/4-20 \times 1$ " machine screws.	
Horizontal mullions	Mechanical	The horizontal members were butt joints, sealed with $1/2" \ge 1/8"$ butyl sealant tape on the interior side only, and secured to adjoining members with three hex washer head $1/4-20 \ge 1"$ machine screws.	

5.0 Test Specimen Description: (Continued)

5.3 Weatherstripping:

Description	Quantity	Location
Interior glazing gasket	1 Row	All four sides of glazing pocket
Exterior glazing gasket	1Row	All four sides of glazing pocket

5.4 Glazing:

Glass Type	Glazing	Glazing Method
		Prior to and after setting the glass,
	9/16" laminated glass	Dow 995 sealant was applied to
		the corners of the EPDM gaskets.
Monolithic	1/4" heat strengthened	The glazing was set from the
Monontine	- 0.090" SentryGlas	exterior onto two setting blocks
	Plus® - 1/4" heat	against an EPDM interior gasket
	strengthened	and secured using an exterior
		EPDM drive-in gasket.

Location	Quantity	Daylight Opening	Glass Bite
Upper lite	3	56-5/8" x 16-3/8"	5/8"
Lower lite	3	56-5/8" x 96"	5/8"

5.5 Drainage:

Drainage Method	Size	Quantity	Location
Sub-sill flashing	180"	1	Rough opening at sill
End dam	3/4" x 2-5/8" x 5-1/4"	2	One at each end of sill flashing
Water diverter	1-11/32"	6	One at each end of horizontal mullion

5.6 Hardware: No hardware was utilized.

5.0 Test Specimen Description: (Continued)

5.7 Reinforcement:

Drawing Number	Location	Material
FL500_04, Sheet No. 7		1/4" x 1- 3/8" x 4-5/8"
		Steel U-channel which was
	Vertical mullions	secured in place using a
		#10-24 x 5/8" hex head
		sheet metal screw.

6.0 Installation:

The specimen was installed into a C8 steel channel buck. The rough opening allowed for a 1/2" shim space at the top, underneath the sub-sill flashing, and at the jambs. The exterior and interior perimeters of the storefront were sealed with Dow 795.

Location	Anchor Description	Anchor Location
Head / Sill	3/8" x 1-1/2" hex bolt with lock washer and nut	Two bolts each side of vertical mullion; first bolt 1-3/4" from edge with 2-1/4" spacing between second bolt. One bolt 3" from jamb corners. All fasteners at sill were cap- sealed with sealant.
Jambs	#1/4-20 x 2-1/2" self-drilling hex	1-1/2" above and below
Sub-cill	#12 x 1-1/2" flat head Philips TEKS	Une each at 24" from each end
505 511	screw	and one each at midpoint.

7.0 Test Results: The temperature during testing was 82°F. The results are tabulated as follows:

Protocol TAS 202-94, Static Air Pressure Tests

Test Units #1, **#**2, **#**3 **Design Pressure**: ±70.0 psf

Title of Test	Results
Air Infiltration at 1.57 psf (25 mph)	0.01 cfm/ft ²
Air Infiltration at 6.24 psf (50 mph)	0.02 cfm/ft ²

		Indicator Reading (inches)					
Structural Loads 50% of Test Pressure (+52.5 psf)	#1	#2	#3	#4	#5	#6	
Maximum Deflection	0.21	0.54	0.08	0.43	0.49	0.46	
Permanent Set	0.01	0.01	0.01	0.01	0.01	0.01	
Design Pressure (+70.0psf)							
Maximum Deflection	0.28	0.69	0.11	0.57	0.64	0.58	
Permanent Set	0.01	0.01	0.01	0.01	0.01	0.01	
50% of Test Pressure (-52.5 psf)							
Maximum Deflection	0.46	0.86	0.33	0.57	0.65	0.65	
Permanent Set	0.10	0.12	0.10	0.09	0.10	0.11	
Design Pressure (-70.0psf)			·				
Maximum Deflection	0.71	1.00	0.32	0.57	0.79	0.75	
Permanent Set	0.06	0.06	0.04	0.05	0.06	0.05	
Water Infiltration 15% Positive Design Pressure (+15.04 psf)			No Pene	etration			
Test Pressure (+105.0 psf)			-				
Maximum Deflection	0.86	1.05	0.18	0.39	0.94	0.90	
Permanent Set	0.13	0.11	0.07	0.10	0.12	0.12	
Test Pressure (-105.0psf)							
Maximum Deflection	0.93	1.22	0.38	0.43	0.93	0.80	
Permanent Set	0.09	0.05	0.06	0.07	0.08	0.07	

Note: See Architectural Testing Sketch #1 for indicator locations.

Protocol TAS 201-94, Impact Test Procedures

Missile Weight: 9.20 lbs Missile Length: 8' 0" Muzzle Distance from Test Specimen: 17' 0"

Test Unit #1:

Impact #1: Missile Velocity: 50.3 fps				
Impact Area: Center midspan of glazing				
Observations : Missile hit target area, fractured glass; no tears				
Results: Pass				

Impact #2: Missile Velocity: 50.3 fps							
Impact Area: Upper right corner of glazing							
Observations:	Missile hit target area, no tears; EPDM gasket pulled out of glazing pocket						
Results:	Pass						

Test Unit #2:

Impact #1: Missile Velocity: 50.3 fps				
Impact Area: Lower left corner of glazing				
Observations: Missile hit target area, fractured glass; no tears				
Results:	Pass			

Impact #2: Missile Velocity: 49.9 fps				
Impact Area: Center midspan of glass				
Observations: Missile hit target area, no tears				
Results:	Pass			

Note: See Architectural Testing Sketch #2 for impact locations.

Protocol TAS 201-94, Impact Test Procedures

Missile Weight: 9.25 lbs Missile Length: 8' 0" Muzzle Distance from Test Specimen: 17' 0"

Test Unit #3:

Impact #1: Missile Velocity: 50.4 fps				
Impact Area: Upper right corner of glazing				
Observations : Missile hit target area, fractured lite; no tears				
Results: Pass				

Impact #2: Missile Velocity: 50.1 fps					
Impact Area: Midspan of vertical mullion (Specimens #2 and					
Observations :	Missile hit target area, dented aluminum				
Results:	Pass				

Impact #3: Missile Velocity: 50.1 fps				
Impact Area: Midspan of vertical mullion (over Specimen #2)				
Observations : Missile hit target area, dented aluminum				
Results:	Pass			

Impact #4: Missile Velocity: 50.3 fps				
Impact Area: Center midspan of glazing				
Observations:	Missile hit target area, no tears			
Results:	Pass			

Note: See Architectural Testing Sketch #2 for impact locations.

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Units #1, #2, #3 **Design Pressure**: ±70.0 psf

Pressure Range psf Of Cycles	Number	Average	Maximum Deflection at Indicator (inches)					
	(seconds)	#1	#2	#3	#4	#5	#6	
14.0 to 35.0	3500	3.98	0.31	0.51	0.11	0.23	0.40	0.45
0 to 42.0	300	5.64	0.34	0.54	0.13	0.25	0.43	0.49
35.0 to 56.0	600	3.73	0.47	0.65	0.15	0.31	0.55	0.59
21.0 to 70.0	100	6.00	0.59	0.76	0.17	0.34	0.67	0.68
			Permanent Set (inches)					
			0.09	0.17	0.09	0.13	0.11	0.15

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure	Number	Average	Maximum Deflection at Indicator (inches)					
psf	of Cycles	of Cycles (seconds)	#1	#2	#3	#4	#5	#6
21.0 to 70.0	50	4.38	0.56	0.96	0.40	0.46	0.68	0.67
35.0 to 56.0	1050	3.46	0.46	0.81	0.33	0.37	0.56	0.53
0 to 42.0	50	5.90	0.33	0.62	0.23	0.29	0.41	0.39
14.0 to 35.0	3350	2.98	0.29	0.57	0.21	0.25	0.37	0.36
			Permanent Set (inches)					
			0.04	0.11	0.06	0.03	0.06	0.05

Observations: With 57 cycles remaining in the positive 30% to 100% range, specimen #1 the upper right corner of the glass pulled out of the glazing pocket. Specimen#1 was boarded up and testing continued through the rest of the cycling program with Specimens #2 and #3. No additional damage or deglazing was observed.

Result: Pass (Test Units #2 and #3)

Note: See Architectural Testing Sketch #1 for indicator locations. Test Specimens #1, #2, and #3 were cycled in a common chamber.

Protocol TAS 201-94, Impact Test Procedures

Missile Weight: 9.20 lbs Missile Length: 7' 9-1/2" Muzzle Distance from Test Specimen: 17' 0"

Test Unit #R-1: (Retest 07/08/2011)

Impact #1: Missile Velocity: 49.4 fps							
Impact Area:	Center midspan of glazing						
Observations :	Missile hit target area, fractured lite; no tears						
Results:	Pass						

Impact #2: Missile Velocity: 49.3 fps							
Impact Area:	Upper right corner of glazing						
Observations :	Missile hit target area, fractured lite; no tears						
Results:	Pass						

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Unit #R-1 **Design Pressure**: ±70.0 psf

Pressure	Pressure Number		Maximum Deflection at Indicator (inches)											
psf	of Cycles	(seconds)	#1	#2	#3	#4	#5	#6						
14.0 to 35.0	3500	3.54	0.12	0.32	0.06	0.28	0.32	0.30						
0 to 42.0	300	4.84	0.14	0.37	0.08	0.32	0.37	0.35						
35.0 to 56.0	600	4.27	0.23	0.51	0.12	0.44	0.51	0.49						
21.0 to 70.0	100	6.61	0.26	0.59	0.15	0.54	0.60	0.56						
			Permanent Set (inches)											
			0.09	0.09	0.08	0.10	0.10	0.09						

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure	Number	Average	erage Maximum Deflection at Indicator (inches)								
psf	of Cycles	(seconds)	#1	#2	#3	#4	#5	#6			
21.0 to 70.0	50	5.09	0.49	0.86	0.31	0.61	0.72	0.67			
35.0 to 56.0	1050	3.51	0.44	0.76	0.27	0.54	0.62	0.58			
0 to 42.0	50	5.48	0.36	0.62	0.22	0.44	0.51	0.47			
14.0 to 35.0	3350	3.01	0.32	0.52	0.17	0.39	0.43	0.40			
			Permanent Set (inches)								
			0.11	0.13	0.04	0.15	0.11	0.11			

Observations: No additional damage or deglazing was observed.

Result: Pass

Note: See Architectural Testing Sketch #1 for indicator locations.

8.0 Test Equipment:

Cannon: Constructed from steel piping utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine

Timing Device: Electronic Beam Type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Deflection Measuring Device: Linear transducers

9.0 Laboratory Compliance Statements: The following are provided as required by the protocols for the testing reported herein.

Upon completion of testing, specimens tested for TAS 201-94 met the requirements of Section 1626 of the Florida Building Code, Building (2007).

Upon completion of testing, specimens tested for TAS 202-94 met the requirements of Section 1620 of the Florida Building Code, Building (2007).

Upon completion of testing, specimens tested for TAS 203-94 met the requirements of Section 1626 of the Florida Building Code, Building (2007).

Tape and film were used to seal against air leakage during structural testing. In our opinion, the tape and film did not influence the results of the test.

The service life of this report will expire on the stated Test Record Retention End Date, at which time such materials as drawings, data sheets, samples of test specimens, copies of this report, and any other pertinent project documentation, shall be discarded without notice.

If test specimen contains glazing, no conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s) can be made. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, Inc.

Jack R. Hook Technician Shawn G. Collins, P.E. Manager - Regional Operations

JRH:ck/cmd

Attachments (pages): This report is complete only when all attachments listed are included. Appendix-A: Sketches (2) Appendix-B: Photographs (7) Appendix-C: Drawings (7)

This report produced from controlled document template ATI 00501, issued 06/10/11.

Appendix A

Sketches

OF 2 GAZEd)			<i>oec</i> i	Men	i Æ				SK	etc	h #	F		mont	tt.	3	· · · · · · · · · · · · · · · · · · ·						
BHEET /	roduct							· · · ·				• # 1											
00 1 6-6	urel Pr						堆	4	*	5	*6		·····				· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	**			; ; ;
).Bloze.	chitect	 · · · · · · · · · · · · · · · · · · ·					•••						· · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
ROJECT NA	61 AG									1 2 2 1 2 1 1 2							1 						-
	Con					· · · · · · · · · · · · · · · · · · ·	·					· #2									1 1 1 1 1 1		; ;
3/12 RH&																······································							
1/ 1							· · · · · · · · · · · · · · · · · · ·	··· · · · · · · · · · · · · · · · · ·		;						······································	· · · · · · · · · · · · · · · · · · ·						
at DA:				· · · · · · · · · · · · · · · · · · ·				 		, , , , , , , , , , , , , , , , , , , ,			· · · · · · · /							 			• • • •
itectur ng				2 2 4 4					· · · · · · · · · · · · · · · · · · ·					- / / 		(; ;; ; ; ; ;			· · · ·
Arch Testi														· · · · · · · · · · · · · · · · · · ·			· ·			 			
						· · · · · · · · · · · · · · · · · · ·		= I	ndic	ator	Locat	ioN		2 			····· · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · · ·	
		han an a						: ز ار باری		 	• • • • • • • • • • • • • • • • • • •	ten tenti tententententententententententententent			الله معالية الم المعالية الم المعالية المعالية		er signe en de re	10 11/1) - 1 200000000		4 - 1 - 1 - 1 1 - 1 1 - 1 - 1			

Appendix B Photographs

Photo No. 1 Specimens #1, #2 and #3 Overall view of test specimens

Photo No. 2 Specimen #1 Typical corner detail at exterior

Photo No. 3 Specimens #1 and #2 Typical mullion detail at exterior

Photo No. 4 Specimens #2 and #3 Water accumulating in corners near glazing pocket during 15.04 psf water test

Photo No. 5 Specimens #1, #2, #3 Exterior view during TAS 203 cyclic loading; Specimen #1 at far left experienced a failure

Photo No. 6 Specimen #1 Failure of glazing at upper right corner of specimen during TAS 203 positive loading

Photo No. 7 Specimen #1 Close-up of corner failure; glazing was pulled from glazing pocket

Photo No. 8 Specimens #1, #2, #3 Wood bracing was used on Specimen #1 in order to continue cyclic testing on Specimens #2 and #3

Photo No. 9 Specimens #R-1, #2, #3

The glazing in Specimen #1 was removed and replaced; wood bracing was used on Specimen #2 to prevent failure and restart impact and cyclic procedures on Specimen #R-1 at far left.

Photo No. 10 Specimen #R-1 Impact at center midspan

Photo No. 11 Specimen #R-1 Impact at upper right corner

Photo No. 12 Specimens #1, #2, #3 Installation of Sub-sill

Test Report No.: B1028.01-401-18 Report Date: 01/03/12 Test Record Retention End Date: 07/08/21

Photo No. 13 Specimens #1, #2, #3 Typical corner detail at sub-sill

Appendix C

Drawings

PRODUCT APPROVAL SUBMITTAL FL500 FRAMING SYSTEM WITH DRY GLAZE GASKETS FOR USE IN HURRICANE ZONES REQUIRING LARGE MISSILE IMPACT PROTECTION

GENERAL NOTES:

TEST STANDARDS
<u>AIR</u> -TAS202
WATER-TAS202
STATIC-TAS202
IMPACT-TAS201
CYCLIC-TAS2D3

DESIGN PRESSURE VARIES REF. SHEETS 2-6 OF 16

WATER INFILTRATION: 15 PSF

AIR INFILTRATION: 6.24 PSF

TYPICAL GLASS BITE IS 9/16" UNLESS OTHERWISE NOTED.

1/2" MAXIMUM SHIM SPACE @ PERIMETER UNLESS OTHERWISE NOTED

ALL ALUMINUM EXTRUSIONS SHALL BE MADE FROM 6063-T6 ALLOY AND TEMPER.

THIS PRODUCT HAS BEEN DESIGNED AND TESTED TO COMPLY WITH FLORIDA BUILDING CODE DEPTHENT 2007 INCLUDING HIGH VELOCITY HURRICANE ZONES.

MATERIALS, INCLUDING BUT NOT LIMITED TO STEEL SCREWS, THAT COME IN CONTACT WITH OTHER DISSIMILAR MATERIALS SHALL'MEET THE REQUIREMENTS OF 2004 FLORIDA BUILDING CODE SECTION 2003.8.4

ABBREVIATIONS: D.L.O. = DAY LIGHT OPENING C.O.C. = CONCEALED OVERHEAD CLOSER TYP. = TYPICAL D.O.W. = DOOR OPENING WIDTH D.O.H. = DOOR OPENING HEIGHT S.A.C. = SURFACE APPLIED CLOSER

DEFINITIONS: <u>DICTIONARY OF ARCHITECTURE & CONSTRUCTION-2ND EDITION</u> 1. SIDE LIGHT - A FRAMED AREA OF FIXED GLASS ALONGSIDE A DOOR 2. TRANSOM FRAME - A DOORFRAME WITH A TRANSOM BAR AND GLASS ABOVE THE DOOR

SHEET 1 INDEX TO DRAWINGS AND NOTES SHEET 2 TYPICAL ELEVATION LIGHT ALUM. MULLION WITH STEEL-LONG SPAN SHEET 3 GLAZING SCHEDULE SHEET 4 FRAMING DETAILS SHEET 5 FRAMING DETAILS SHEET 6 BILL OF MATERIALS FOR FRAMING AND ACCESSORIES SHEET 7 DIE DRAWINGS

Architectural Testing

Test sample complies with these details. Deviations are noted.

Report 131028.01-401-18

									1	
	Π									
	μ									
								Arcellectural Froducts #	3010 RICE MENT ROAD, TUSCALOOSA, AL 36406	
		FRUDUCI IESI DRAWINGS	EI SOO WINDOW WALL SVETEN	MUTER OF A WARTER OF A LONG TH	PROTOCOUS: PA201/202/03				INDEX TO DRAWINGS AND NOTES	
	DATE DRAS	W. CH	7	/1 대	2/ tcx	20 ED	11	7R JL	OVE W	ŏ
ľ	PRO.	ÆCI	r N	0.			سال		••••	
ľ	DRAN		к ж Г	a. 5 i	0	2		$\overline{\mathbf{v}}$	1	

SHEET

1 OF 7

.

Not 2555 1 11 EM NO. P/N 1 NG1 2 NOT 051 3 NG15 4 SM550 5 .795 5 .795 7 Not 055 7 Not 057 10 WD200 11 FLS01 12 FLS02 13 FLS03 14 FLS04 15 FLS06 16 FLS06 17 Not 057 19 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 17 Not 057 18 State 16 State 17 Not 057 18 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 16 State 16 State 16 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 17 Not 057 16 State 16 State 16 State 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 17 Not 057 16 State 17 Not 057 16 State 17 Not 057 16 State 16 State 17 Not 057 16 State 17 Not 057 17 N	DESCRIPTION EXTERIOR GLAZING GASKET D INTERIOR GLAZING GASKET D INTERIOR CLAZING GASKET D SILICONE - FRIMETER SEALANT SILICONE - CLASS TO METAL D SETTING BLOCK • SILL & HORIZONTAL SETTING BLOCK • SILL & HORIZONTAL HEAD OR WALL JAMB SILL OR HEAD GLASS STOP STD. VERTICAL MULLION/DOORJAMB OPEN BACK MULLION FILLER NTERMEDIATE HORIZONTAL D D D D D D D D D D D D D D D D D D D	BILL OF MATERIALS DIMENSIONS MATERIAL MANUFACTURER NOTES 0.120 SPACE EPDM VARIES Meets 0.500 X 0.125 X VARIES EPDM VARIES Meets 0.500 X 0.125 X VARIES EVITVL SCHNEC-MOOREHEAD SED 0.500 X 0.125 X VARIES BUTVL SCHNECT SED FILL SPACE SILICONE DOW CORNING GLASS TO METAL AND INTERNAL II FILL SPACE SILICONE DOW CORNING CLASS TO METAL AND INTERNAL III 0.480 X 0.0590 INJECTION MOLDED LASTIC CORAL INDUSTRIES, INC. 2.46CH END OF INTERN. HORIZONTAL III 1.250 X 3.000 X 0.094 GOB3-T6 ALUMINUM CORAL INDUSTRIES, INC. 2.500 X 4.980 X 0.094 GOB3-T6 ALUMINUM CORAL INDUSTRIES, INC. III 2.500 X 5.000 X 0.094 GOB3-T6 ALUMINUM CORAL INDUSTRIES, INC. </th <th>C13 • C13 •</th>	C13 •
10 NOT USE 13 NOT USE 20 NOT USE 21 NOT USE 21 NOT USE 21 NOT USE 23 NOT USE 24 CSS00- 25 NOT USE 26 NOT USE 27 NOT USE 30 NOT USE 31 NOT USE 32 AS16 NOT USED NOT USE 38 AS38 NOT USED NOT USE 38 AS38 NOT USED NOT USE 38 AS38 NOT USED NOT USE	D	1 2.620 X 5.402 X 0.084 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 1.156 X 0.844 X 0.078 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 1.156 X 0.844 X 0.078 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 1.156 X 0.844 X 0.078 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 1 4.660 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 2.620 X 7.75 X 5.25 6063-T6 ALUMINUM CORAL INDUSTRIES, INC. 2.620 X 7.75 X 5.25 5.51 VARIES 2.620 X 7.75 X 5.25 5.51 VARIES 2.620 X 7.75 X 7.75 5.51 VARIES 2.620 X 7.75 THP 5.51 2.77 THP 5.51 <t< th=""><th>VALL SYSTEM</th></t<>	VALL SYSTEM
144 FASTEN	ER FOR ANCHORING (2) TO STEEL SUBSTRATE	Image: Wares NON-STRUCTURAL Architectural Testing Test sample complies with these details. Deviations are noted. Report#_Blo28.0[-40]-(8) Date 12/19/11 Test, JRH	A MORINIA 00514
 			<u></u>

